SIAM J. Sc1. STaT. COMPUT. © 1989 Society for Industrial and Applied Mathematics
Vol. 10, No. 1, pp. 205-209, January 1989 015

TIMELY COMMUNICATION

Under the “timely communications” policy for the SIAM Journal on Scientific and Statistical Computing, papers
that have significant timely content and do not exceed five pages automatically will be considered for a separate section
of this journal with an accelerated reviewing process. It will be possible for the note to appear approximately six months
after the date of acceptance.

BISECTION IS NOT OPTIMAL ON VECTOR PROCESSORS*
HORST D. SIMONt

Abstract. Recently there has been revived interest in the bisection method for computing
eigenvalues of symmetric tridiagonal matrices, since this method lends itself easily to a parallel
implementation. A natural extension of the bisection method is the multisection method. The
relative advantages of these two methods have been discussed in several publications ([H. Bernstein
and M. Goldstein, SIAM J. Sci. Statist. Comput., 9(1988), pp. 601-602], [I. Ipsen and E. Jessup, Solving
the symmetric tridiagonal eigenvalue problem on the hypercube, Tech. Report YALEU/DCS/RR-548, Yale
Univ., Dept. of Computer Science, July 1987, [S. Lo, B. Philippe, and A. Sameh, SIAM J. Sci. Statist.
Comput., 8(1987), pp. 8155-5165)). The purpose of this note is to contribute another argument in
favor of using the multisection method, which did not arise explicitly in the past discussion. A simple
analysis and some numerical examples show that the bisection method is in general not optimal in
the class of multisection methods for the extraction of one eigenvalue on vector processors. Numerical
results on a CRAY-2, a Convex C1-XP, and an Alliant FX/8 show that the optimal multisection
section method can be several times faster than the bisection method.

- Key \.;vords. symmetric tridiagonal eigenvalue problem, bisection method, multisection method,
parallel bisection, vector processors ‘

AMS(MOS) subject classification. 65F15

1. Introduction. Several researchers have recently investigated parallel algo-
rithms for the symmetric tridiagonal eigenvalue problem [2], 5], [7], [8]. Dongarra
and Sorensen [5] implemented the divide-and-conquer algorithm by Cuppen (3], and
obtained considerable speedups over TQL2 from EISPACK [6],(12] on a CRAY X-
MP/4 and an Alliant FX/8. Lo, Philippe, and Sameh [8] used a combination of
bisection and inverse iteration and demonstrated an even better performance of their
method than the divide-and-conquer algorithm on the Alliant FX-8, when computing
all the eigenvalues and vectors. Ipsen and Jessup [7] investigated the same algo-
rithms on a hypercube, and arrived at the conclusion that bisection and multisection
are more efficient than Cuppen’s divide-and-conquer method on distributed-memory
parallel processors, with bisection faster than multisection.

The authors in [8] state that they prefer multisection over bisection in what they
call the isolation phase. They give two reasons: (a) multisection creates more tasks
than does bisection and thus achieves a better load balancing, and (b) there are several
eigenvalues in one interval. In a recent timely communication Bernstein and Goldstein
1] argue against these two reasons for preferring multisection in the isolation phase.
The purpose of this communication is to add another argument in favor of multisection
to the current discussion. This argument has so far not been explicitly stated in any

* Received by the editors July 18, 1988; accepted for publication September 22, 1988.

t Numerical Aerodynamic Simulation (NAS) Systems Division, National Aeronautics and Space
Administration Ames Research Center, Mail Stop 258-5, Moffett Field, California 94035. (The author
is an employee of Boeing Computer Services.)

205

206 TIMELY COMMUNICATION

of the references: even for the computation of a single eigenvalue, bisection is nol
optimal on a vector processor,

In addition to introducing a new argument Into the engoing bisection versus
multisection discussion, this obscervation has several olher potential consequences.
Two of the second-generation distributed-memory parallel computers, which have
heen introduced recently, provide vector processing [10].[11]. Thus the observation of
this note also may change the outcome of Ipsen and Jessup's [7] numerical studies in
favor of multizeciion, when carried out on a hypercube with veetor processing at the
nodes, Multisection is also an option considered in the design of LAPACK [4], Tn [4
multisection is considered oniy as an opiion for a parallel environment, Based on the
results here, multisection is also a valid option for eigenvalue extriaction on a single
vecolor processor.

2. Analysis of multisection on vector processors. Given a symmetric tridi-
agonal i = n matrix T, with

¥ .HE ﬂ v 0

B2 iy 4 e]
T=| :

{l ' Hr; I Ly —1 Jf]l".

£ — 0 i PR T

The eigenvalues Ay, 1= 1+ can be determined as the zeros of the so-called boltom-
pivot function &, (A}, which is defined as follows:

£y [45-]' =m; —d,

5;() B
: =y e td
/ 3 Ay 10A)

The &' are the elements of the diagonal matrixz 2 in the LIDLT factorization of
T — Al For a given point ¢, the bottom pivot is commonly evaluated in the following
loop [see [9]):

BISECTION ALGORITHM: & — oy —¢
1
fory=2-+ndo
=iy —¢—d1/4
if (§ = D) then § «— ¢
iF (& < 0) then vo—p+ |
end do

Here ¢ is a small multiple of the round-off unit of the machine used. Using Sylvester's
inertia theorem, it follows that i is equal to the number of eigenvalues less than ¢ [for
details see [9]). Using v the implementation of a bisection algorithm for computing
an eigenvalue of T is straightforward,

Because of the nonlinear recurrence, the loop evaluating & does net veetorize,
However, if the value of i 15 to be evaluated for p distinet trial points ¢, &= 1- o
then the two loops can simply be interchanged, The additional cost are three arrays of
the length p for the storage of the ¢, &, and v values. This is trivial on today's vector
machines. The benefit is that the evaluation of muliiple &'s and ©'s now vectorizes,

208 TIMELY COMMUNICATION

eight points is optimal on such a machine.

3. Numerical results. In order to validate the above analysis, a multisection
algorithm has been implemented on several vector processors. In a first numerical
experiment the inner loop of the multisection algorithm was timed. Execution times
were fitted to the linear model given by (1) by a least-squares fit. . The resulting
measurements for the ratio s/r are listed in Table 2, together with the asymptotic
rate in MFLOPS, and the resulting optimal number of points according to (2). The
implementation was in FORTRAN, and all compilers vectorized the two if-statements

TABLE 2
Measurements of s/t for several vector processors.

Machine Compiler MFLOPS 2 | Popt

CRAY-2 cft2 29.5 | 9.8 7

CRAY-2 cft77 28.1 | 17.4 10

Alliant FX/8 (1CE) | fortran -Ogv 10| 7.6 6

Alliant FX/8 (4CE) | fortran -O 3.4 | 60.0 25

Convex C1-XP fc -O2 1.5 1 10.3 7
TABLE 3

Comparison bisection versus multisection.

Machine Bisection | Multisection | pops | Ratio
CRAY-2 (cft2) 0.299 0.098 13 3.05
CRAY-2 (cft77) 0.293 ‘ 0.092 18 3.18
Alliant FX/8 (1CE) | 4.102 1.894 6 2.17
Alliant FX/8 (4CE) | 7.164 1.881 37 3.81
Convex C1-XP 3.532 : 1.285 13 2.75

within the loop. The multisection loop was timed for lengths up to 2,048 iterations
(i-e., multisection points). All times are averages over 50 runs, and all results reported
are for 64 bit arithmetic. All machines are at the NASA Ames Research Center in
Moffett Field, California.

Table 2 also lists the results for four processors of an Alliant FX-8. These are
included because the model above carries over easily to this situation and yields an
example of a machine with a high ratio s/r. The CRAY-2 in the benchmark is a
newer model with the faster dynamic random access memory (DRAM). Results on
an older CRAY-2 with the slower DRAM were not significantly different to warrant
their inclusion here. .

The results in Table 2 are only timing information for the simple inner loop
of the multisection algorithm. They do not indicate the potential speedup using a
multisection algorithm on these machines. This information is provided in Table 3.
The execution times in Table 3 were obtained from running the multisection algorithm
on a random tridiagonal matrix of order 3,000. The multisection algorithm was used
to compute the smallest eigenvalue of the matrix. Table 3 lists both the execution
time (in seconds) for bisection (p = 1) and for multisection with the optimal p.

The results in Table 3 show the multisection algorithm with optimal number of
bisection points to be about three times faster than the bisection algorithm. The
optimal popt, in Table 3 has been obtained by inspection from runs of the multisection

TIMELY COMMUNICATION 209

algorithm, with p varying from 1 fo 60. The puye from Table 3 is different from the
predicted value in Table 2. The execution times in Table 3 take the whole subroutine
into account, whereas Table 2 iz baged on the evaluation of the simple multisection
loop alone. The theoretical analysis gives an approximate prediction of the number
of optimal multisection points, with the numbers in Table 2 giving an underestimate.

The results in Table 3 demonstrate that multisection is considerably more efficient
than bisection for vector processors and therefore should be considered in the design of
LAPACK. Some other closely related questions, for example, the use of asymptotically
faster methods such as zeroin and when to switeh from multisection to QR, are beyond
the scope of this timely communication, but also require reevaluation in the light of
our new resulfs.

REFERENCES

[1] H. BEANSTEIN AND M. GOLDSTEIN, Optimezng ivens' algorithm for multiprocessors, STAM L.
8ri, Statist. Comput., 9 (1988), pp. 601 — 602.

{2 . Parallel implementation of bisection for the caleulntion of eigenvalues of tridingonal symmetric
mairices, Tech, Rep., Courant Institute, New York University, 1985,

[1. 1. CupreN, A divide and conquer method for the symmetric tridingonal eigenvalue probler, Numer,
Muth., 36 (1981}, pp, 177 — 185

[4] J. DemMEL, J, DU Croz, §. HAMMARLING, AND D, SORENSEN, Guidelines for the desim of
symmetric eigenroutines, SVD, and deretive refinement and condifion estimation for linear syatema,
Tech. Report MOSD 111, Argonne National Laboratory, February 1088,

(5] 1. J. DoNcarrA AND Do C. SBORENSEN, A fully parllel algorithm for the symmetnic eipenvalue
problem, STAM J. Sci. Statist, Comput., 8 (1987), pp. s139 - 5154,

[6] B. §. Garsow, J. M. BoyLg, J. J. DONGARRA, aXD C. B. MOLER, Muirir Eigensysiem
Routines - BEISPACK Guides Extenston, Lecture Notes in Computer Sciences, Vol. 51, Springer-
Verlag, Berlin, New York, 1977,

[7] 1. IPSEN AND E. JESSUP, Solng the symetric tridiagonal sigenvalue problem on the hypercibe, Tech.
Report YALEU /DCS,/RR-548, Yale Univ., Dept, of Computer Seience, July 1987,

[8] 5. Lo, B, PHILIPPE, AND A. SAMEN, A multiprocessor algorithm for the symmeinc eigenvalue
prodlem, STAM 1. Sci. Statist.. Comput., 8 (1987), pp. 8155 — s165,

[4] B. PARLETT, The Symmetric Bigenvalue Problemn, Prentice Hall, Englewood Clifis, NJ, 168,

[10] D. ScOTT AND J. RATTNER, The scalability of Mntel concurrent super computers, in Proc. Third

International Conference on Supercomputing, Tnternational Supercomputing Institute,
Boston, 1988, pp, 121 - 124,

[11] Y. SHmM AND A, KERNEK, A new gemerstion i parallel processing systems, SuperComputing,
Winter {1988}, pp. 5 — 28, :
[12]'B. T. SsaTH, J. M. BOYLE, J. J. DORGARRA, B. 5, GARBOW, Y. IKERE, V. O. KLEMA,

AND O, B. MOLER, Matrir Eigersystern Routmes - EISPACK Guide, Lecture Notes in Com-
puter Sciences, Vol 6, Springer-Verlag, Berlin, New York, 1976.

